© Springer-Verlag 1999 Printed in Austria

Synthesis of Cyclohexane Containing 5'-O-Glycine Derivatives of Uridine as Potential Inhibitors of *UDP*-glucuronosyltransferase

Dimitar K. Alargov^{1,*}, Roumyana G. Gugova¹, Pavleta S. Denkova², Gunther Müller³, and Evgeny V. Golovinsky¹

Summary. In order to design potential inhibitors of *UDP*-glucuronosyltransferase, two different pathways for the synthesis of cyclohexane containing 5'-O-glycine derivatives of uridine were developed, one starting with the cyclohexyl moiety, and a second one beginning with the uridine moiety. Thus, 5'-O-(cyclohexylcarboxyl-glycyl)-2',3'-O-isopropylideneuridine and 5'-O-(cyclohexylpropionyl-glycyl)-2',3'-O-isopropylideneuridine were obtained. According to the results, the second approach is more convenient.

Keywords. Uridine; 5'-O-Amino acid derivatives; Cyclohexanecarboxylic acid; Cyclohexylpropionic acid; *UDP*-Glucuronosyltransferase.

Synthese von cyclohexylsubstituierten 5'-O-Glycin-uridinderivaten als potentielle Inhibitoren der *UDP*-Glukuronosyltransferase

Zusammenfassung. Mit dem Ziel, potentielle Inhibitoren der *UDP*-Glukuronosyltransferase herzustellen, wurden zwei verschiedene Synthesewege für 5'-O-Glycinderivate entwickelt. Der erste Syntheseweg beginnt mit dem Cyclohexylfragment, der zweite mit dem Uridinest. Es wurden 5'-O-(Cyclohexylcarboxyl-glycyl)-2',3'-O-isopropylidenuridin und 5'-O-(Cyclohexylpropionyl-glycyl)-2',3'-O-isopropylidenuridin hergestellt. Entsprechend den Ergebnissen ist die zweite Methode besser geeignet.

Introduction

UDP-Glucuronosyltransferase (*UGT*, EC 2.4.1.17) is a multigenic family of membrane-bound isoenzymes involved in the biotransformation and detoxication of various exogenous and endogenous compounds [1]. These enzymes catalyze the transfer of glucuronic acid from *UDP*-glucuronic acid (*UDP-GlcA*) to the

¹ Institute of Molecular Biology, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria

² Institute of Organic Chemistry, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria

³ Institut für Hygiene und Arbeitsmedizin, Universität Essen, D-45122 Essen, Germany

^{*} Corresponding author

938 D. K. Alargov et al.

respective aglycones (RXH) containing hydroxyl, amino, carboxyl, or sulfhydryl groups, forming water soluble β -(D)-glucuronides which are readily excreted due to the hydrophilicity of the glucuronic acid moiety.

Enzymatic glucuronidation also plays a pivotal role in the biotransformation of drugs. Various drugs, including the anti-HIV agent AZT (3'-azido-3'-deoxythymidine) are extensively converted to their inactive glucuronides and excreted from the organism [2,3]. Thus, the inhibition of UGT could increase the plasma level and therapeutic efficacy of a number of drugs. Simultaneously, the development of selective inhibitors of UGT could also provide a useful approach in studying the active sites of different UGT isoforms.

In the last years, several classes of *UGT* inhibitors have been developed [4–7]. According to the current concepts, the *UDP* part or the uridine moiety is thought to provide most of the free binding energy of the ligand-enzyme complex [8]. Linkage of lipophilic aryl or arylalkyl residues to *UDP* and uridine have led to powerful *UGT* inhibitors considered as possible transition state analogs [9–13].

Recently, we have synthesized novel uridinyl analogs modified at the 5'-O-position by protected and unprotected amino acids [14] and oligopeptides [15]. The inhibitory potency of these compounds on the glucuronidation of 4-nitrophenol (4-NP) and phenolphthalein (PPh) by rat liver microsomes has also been tested. Some of them have been found to be inhibitors of both 4-NP and PPh-glucuronidation [16]. To estimate the contribution of the different parts of the inhibitors to the active site binding, a quantitative structure-activity relationship (QSAR) study was also performed [17].

Continuing our studies on the design and the structure-activity relationships of effective *UGT* inhibitors, we decided to synthesize a series of compounds containing lipophilic residues attached to amino acid derivatives of uridine. Here we report the synthesis of cyclohexane containing 5'-O-glycine derivatives of uridine as potential inhibitors of *UDP*-glucuronosyltransferase.

Results and Discussion

For the synthesis of the compounds, two different pathways were tried, one starting with the cyclohexyl moiety and a second one beginning with the uridine residue. According to the first approach (Scheme 1), cyclohexanecarboxyl glycine benzyl ester (1) was prepared from cyclohexanecarboxylic acid and glycine benzyl ester using the *DCC* (dicyclohexylcarbodiimide) method [18] in 94% yield after recrystallisation from EtOAc/PE. The benzyl group of 1 was then deprotected by catalytic hydrogenolysis over 10% Pd/C/ammonium formate [19] to yield cyclohexanecarboxyl glycine (2). Then, 2 was esterified with 2',3'-O-isopropylideneuridine to provide 3 using 4-dimethylaminopyridine as the catalyst [20]. The rather low yield of 3 (20%, 15% overall yield based on 2',3'-O-isopropylideneuridine) was due to the poor solubility of 2 in solvents like *DMF* or *DMSO*. To avoid this problem, we decided to try another approach.

According to the second approach (Scheme 2), 3 was prepared by a three-step synthesis starting from 5'-O-(N-benzyloxycarbonyl-glycyl)-2-',3'-O-isopropylideneuridine (4). The latter was prepared from N-benzyloxycarbonyl glycine and 2',3'-O-isopropylideneuridine in analogy to 3 in 94% yield. In the next step, the

Scheme 1

Z-Gly-OH + HO-CH₂ O
$$Z$$
-NH-CH₂ C-O-CH₂ O Z -NH-CH₂ C-O-CH₂ O Z -NH-CH₃ Z -NH-CH₄ Z -NH-CH₄ Z -NH-CH₅ Z -NH-CH

Scheme 2

benzyloxycarbonyl group (Z) of **4** was deprotected by catalytic hydrogenolysis in the same way as for **2** to give 5'-O-glycyl-2',3'-O-isopropylideneuridine (**5**) which was used in the next step without further purification. A 76% yield of **3** was obtained after esterification of **5** with cyclohexanecarboxylic acid. The overall yield based on 2',3'-O-isopropylideneuridine was 71%. In a similar way as described above, cyclohexylpropionyl glycine benzyl ester (**6**), cyclohexylpropionyl glycine (**7**), and 5'-O-(cyclohexylpropionyl-glycyl)-2',3'-O-isopropylideneuridine

940 D. K. Alargov et al.

(8) were prepared. The new derivatives were TLC pure and were characterized by ¹H NMR, MS, and elemental analyses.

Conclusions

In order to design potential inhibitors of *UDP*-glucuronosyltransferase, two different pathways for the synthesis of cyclohexane containing 5'-O-glycine derivatives of uridine were developped. According to the results, the second approach (Scheme 2) is more convenient and should therefore be used for the synthesis of similar compounds.

Experimental

The amino acid derivatives were purchased from Bachem Biochemica GmbH (Heidelberg). 2',3'-O-Isopropylideneuridine was obtained from Sigma. All other chemicals were of analytical grade. Melting points were measured with a Büchi 535 apparatus. TLC analysis was performed on aluminium sheets Silica gel 60 F₂₅₄ (Merck) using the following chromatographic systems: A: BuOH:AcOH:H₂O (3:1:1), B: CHCl₃:MeOH (9:1); the spots were visualized by UV light or by spraying with the appropriate reagents (*Reindel* [21], ninhydrin). For column chromatography, Merck Kieselgel 60 (76–230mesh ASTM) was used. Optical rotation was determined with a Polamat A Carl-Zeiss instrument. The ¹H NMR spectra were obtained on a Bruker DRX-250 instrument (250 MHz). Elemental analyses were performed with a Perkin-Elmer M 240 apparatus; the results were in good agriment with the calculated values. Mass spectra were recorded with a Jeol JMS D100 spectrometer.

Cyclohexylcarboxyl glycine benzyl ester (1; C₁₆H₂₁NO₃)

2.28 g Cyclohexanecarboxylic acid (17.8 mmol) and 1.48 g DCC (8.9 mmol) were stirred in $10 \,\mathrm{cm}^3$ DMF for 30 min at 0°C. Then, 2.0 g glycine benzyl ester p-tosylate (5.9 mmol) and 0.82 cm³ $\mathrm{Et}_3\mathrm{N}$ (5.9 mmol) were added, and stirring was continued for 24 h at room temperature. The $\mathrm{N,N'}$ -dicyclohexyl urea was removed by filtration. EtOAc was added to the filtrate, and the organic phase was washed with a 5% solution of NaHCO_3 and $\mathrm{H}_2\mathrm{O}$. The EtOAc solution was dried over anhydrous $\mathrm{Na}_2\mathrm{SO}_4$ and evaporated to dryness *in vacuo*. The residue was recrystallized from EtOAc/PE to give 1.52 g pure 1 (94%) as white crystals.

M.p.: $90.5-104^{\circ}$ C; R_f (A) = 0.86, R_f (B) = 0.87; 1 H NMR ((CD₃)₂SO, δ , 250 MHz): 8.17 (bt, 1H, NH), 7.35 (s, 5H, H-arom), 5.1 (s, 2H, CH₂-benzl), 3.84 (d, 2H, H- α (Gly), $J_{\alpha,NH}$ = 5.96 Hz), 2.14 (m, 1H, H- α (Ch ring), 1.69–1.58 (m, 5H, 2×CH₂- β and H- δ (Ch ring)), 1.36–1.04 (m, 5H, 2×CH₂- γ and H- δ (Ch ring)) ppm; MS: m/z = 275 (M⁺), 253, 220, 209, 184, 168, 154, 141, 111, 91 (C₆H₅CH₂⁺), 83 (100%), 76, 67, 55.

Cyclohexylcarboxyl glycine (2; C₉H₁₅NO₃)

0.5 g Cyclohexylcarboxyl glycine benzyl ester (1, 1.7 mmol) was dissolved in 20 cm³ absolute MeOH. Then, 10% Pd/C and 0.32 g ammonium formate (5.0 mmol) were added. The reaction mixture was stirred at room temperature for 10 min. The catalyst was removed by filtration and the filtrate concentrated *in vacuo*. The raw product was recrystallized from EtOAc/PE to give 0.25 g 2 (81%) as chromatographically pure crystals.

M.p.: $66.7-67^{\circ}$ C; R_f (A) = 0.73; ¹H NMR ((CD₃)₂SO, δ , 250 MHz): 7.22 (bt, 1H, NH), 3.38 (d, 2H, H- α (Gly), $J_{\alpha,NH}$ = 3.76 Hz), 2.11 (m, 1H, H- α (Ch ring)), 1.68–1.56 (m, 5H, 2×CH₂- β and H- δ

(Ch ring)), 1.33–1.07 (m, 5H, $2 \times \text{CH}_2$ - γ and H- δ (Ch ring)) ppm; MS: m/z = 185 (M⁺), 167, 141, 130, 117, 112, 110, 83, 76, 73, 73, 67, 60, 55 (100%).

5'-O-(Cyclohexylcarboxyl-glycyl)-2',3'-O-isopropylideneuridine (3; C₂₁H₂₉N₃O₈)

2.07 g cyclohexylcarboxyl glycine (7.0 mmol) and 0.77 g DCC (3.7 mmol) were stirred in $10 \,\mathrm{cm}^3$ DMF for 30 min at 0°C. Then, 0.7 g 2′,3′-O-isopropylideneuridine (2.5 mmol) and 0.035 g 4-dimethylaminopyridine (0.25 mmol) were added, and stirring was continued for 48 h at room temperature. N,N′-Dicyclohexyl urea was removed by filtration. EtOAc was added to the filtrate, and the organic phase was washed with a 5% solution of NaHCO₃ and H₂O. The EtOAc solution was dried over anhydrous Na₂SO₄ and evaporated to dryness *in vacuo*. The residue was recrystallized from EtOAc/PE to give chromatographically pure 0.23 g **3** (20%).

M.p.: 147.5° C; $[\alpha]_{D}^{20} = -10.7$ (c = 1.0, $CH_{3}OH$); $R_{f}(A) = 0.76$; ^{1}H NMR (($CD_{3})_{2}SO$, δ , 250 MHz): 11.37 (s, 1H, NH-U), 7.78 (d, 1H, H-6, $J_{6,5} = 8.07$ Hz), 5.82 (d, 1H, H-1', $J_{1',2'} = 2.70$ Hz), 5.63 (d, 1H, H-5, $J_{5,6} = 8.07$ Hz), 5.10 (t, 1H, H-5', $J_{5',5'} = 10.55$ Hz), $J_{5',4'} = 5.28$ Hz), 4.88 (dd, 1H, H-2', $J_{2',1'} = 2.70$ Hz, $J_{2',3'} = 6.35$ Hz), 4.74 (dd, 1H, H-3', $J_{3',4'} = 3.53$ Hz, $J_{3',2'} = 6.35$ Hz), 4.06 (m, 1H, H-4'), 3.62–3.51 (m, 3H, H- α (Gly) and H-5), 2.14 (m, 1H, H- α (Ch ring)), 1.70–1.58 (m, 4H, 2×CH₂- β (Ch ring)), 1.48 (s, 3H, CH₃-isopropylidene), 1.37–1.14 (m, 6H, 2×CH₂- γ and CH₂- δ (Ch ring)), 1.27 (s, 3H, CH₃-isopropylidene) ppm; MS: m/z = 451 (M⁺), 436, 340, 326, 269, 209, 186, 168, 137, 113 (B+2H), 111 (B⁺), 99, 83 (100%), 75, 69, 55.

5'-O-(N-Benzyloxycarbonyl-glycyl)-2',3'-O-isopropylideneuridine (4; C₂₂H₂₅N₃O₉)

The title compound was prepared from 1.55 g N-benzyloxycarbonyl glycine (7.4 mmol), 0.76 g *DCC* (3.7 mmol), 0.7 g 2',3'-O-isopropylideneuridine (2.5 mmol), and 0.03 g 4-dimethylaminopyridine (0.25 mmol) as described for **7** in 94% (1.12 g) yield.

M.p.: 101.6° C; $[\alpha]_{\rm D}^{20} = -1.5$ (c = 1.0, CH₃OH); $R_{\rm f}$ (A) = 0.73, $R_{\rm f}$ (B) = 0.76; 1 H NMR ((CD₃)₂SO, δ , 250 MHz): 11.40 (s, 1H, NH-U), 7.68 (t, 1H, NH (Gly), $J_{\rm NH,\alpha} = 6.40$ Hz), 7.65 (d, 1H, H-6, $J_{6,5} = 8.09$ Hz), 7.37–7.29 (m, 5H, H-arom), 5.80 (d, 1H, H-1', $J_{1',2'} = 2.14$ Hz), 5.64 (d, 1H, H-5, $J_{5,6} = 8.09$ Hz), 5.03 (s, 2H, CH₂-benzl), 5.00 (dd, 1H, H-2', $J_{2',1'} = 2.14$ Hz, $J_{2',3'} = 6.50$ Hz), 4.77 (dd, 1H, H-3', $J_{3',4'} = 3.43$ Hz, $J_{3',2'} = 6.50$ Hz), 4.32–4.17 (m, 3H, 2H-5', H-4'), 3.79 (d, 2H, H- α (Gly), $J_{\alpha,\rm NH} = 6.40$ Hz), 1.48 (s, 3H, CH₃-isopropylidene), 1.28 (s, 3H, CH₃-isopropylidene) ppm; MS: m/z = 475 (M⁺), 460, 417, 352, 256, 198, 167, 137, 113 (B+2H), 107, 91 (C₆H₅CH₂+, 100%), 79, 69, 55.

Cyclohexylpropionyl glycine benzyl ester (6; C₁₈H₂₅NO₃)

6 was prepared from 5.64 g cyclohexylpropionic acid (36.0 mmol), 3.7 g *DCC* (18.0 mmol), 4.05 g glycine benzyl ester p-tosylate (12.0 mmol), and 1.66 cm³ Et₃N (12.0 mmol) in accordance with the procedure described for **1** in 90% (3.28 g) yield.

M.p.: 166° C; R_f (A) = 0.93, R_f (B) = 0.87; 1 H NMR ((CD₃)₂SO, δ , 250 MHz): 8.28 (bt, 1H, NH), 7.30–7.35 (m, 5H, H-arom), 5.11 (s, 2H, CH₂-benzl), 3.89 (d, 2H, H- α (Gly), $J_{\alpha,NH}$ = 5.90 Hz), 2.15–2.09 (m, 2H, H-2 (Chpr)), 1.66–1.62 (m, 5H, 2×CH₂- β and H- α (Ch ring)), 1.42–1.33 (m, 2H, H-3 (Chpr)), 1.16–1.09 (m, 4H, 2×CH₂- γ (Ch ring)), 0.88–0.79 (m, 2H, 2×H- δ (Ch ring)) ppm; Ms: m/z = 304 (M⁺), 220, 207, 196, 169, 148, 139, 132, 121, 106, 91 (C₆H₅CH₇⁺, 100%), 83, 69, 55.

Cyclohexylpropionyl glycine (7; C₁₁H₁₉NO₃)

1.0 g cyclohexylpropionyl glycine benzyl ester (3.1 mmol) was dissolved in 20 cm³ absolute MeOH. Then, 10% Pd/C and 0.59 g ammonium formate (9.4 mmol) were added. The reaction mixture was stirred at room temperature for 10 min and treated as described for 2 to give 0.61 g 4 (92%).

942 D. K. Alargov et al.

M.p.: 153°C; R_f (A) = 0.79; ¹H NMR ((CD₃)₂SO, δ, 250 MHz): 7.38 (bt, 1H, NH), 5.12 (bs, 1H, COOH), 3.41 (d, 2H, H- α (Gly), $J_{\alpha,NH}$ = 5.06 Hz), 2.08 (m, 2H, H-2 (Chpr)), 1.66–1.62 (m, 5H, 2×CH₂- β and H- α (Ch ring)), 1.35 (m, 2H, 2H, H-3 (Chpr)), 1.17 (m, 4H, 2×CH₂- γ (Ch ring)), 0.80 (m, 2H, 2×H- δ (Ch ring)) ppm; MS: m/z = 214 (M⁺), 196, 184, 168, 139, 130, 121, 117 (100%), 109, 95, 89, 83, 76, 69, 55.

5'-O-(Cyclohexylpropionyl-glycyl)-2',3'-O-isopropylideneuridine (8; C₂₃H₃₃N₃O₈)

Prepared from 1.58 g cyclohexylpropionyl glycine (7.4 mmol), 0.76 g DCC (3.7 mmol), 0.7 g 2', 3'-O-isopropylideneuridine (2.5 mmol) and 0.03 g 4-dimethylaminopyridine (0.25 mmol) as described for **6** in 30% (0.36 g) yield.

M.p.: 140.8° C; $[\alpha]_{\rm D}^{20} = -6.9$ (c = 1.0, CH₃OH); $R_{\rm f}$ (A) = 0.82; 1 H NMR ((CD₃)₂SO, δ , 250 MHz): 11.42 (s, 1H, NH-U), 7.80 (d, 1H, H-6, $J_{6,5} = 8.05$ Hz), 5.78 (d, 1H, H-1', $J_{1',2'} = 2.05$ Hz), 5.63 (d, 1H, H-5, $J_{5,6} = 8.00$ Hz), 5.8 (dd, 1H, H-2', $J_{2',1'} = 2.06$ Hz, $J_{2',3'} = 6.40$ Hz), 4.92 (dd, 1H, H-3', $J_{3',4'} = 2.06$ Hz, $J_{3',2'} = 6.40$ Hz), 4.66 (m, 1H, H-4'), 4.25 (m, 4H, H- α (Gly) and H-5'), 2.27 (m, 2H, H-2 (Chpr)), 1.67 (m, 5H, $2 \times \text{CH}_2$ - β and H- α (Ch ring)), 1.48 (s, 3H, CH₃-isopropylidene), 1.42 (m, 2H, 2H, H-3 (Chpr)), 1.28 (s, 3H, CH₃-isopropylidene), 1.18 (m, 4H, $2 \times \text{CH}_2$ - γ (Ch ring)), 0.83 (m, 2H, $2 \times \text{H}$ - δ (Ch ring)) ppm; MS: m/z = 480 (M⁺), 466, 368, 326, 214, 168, 139 (100%), 137, 121, 113 (B+2H), 97, 83, 69, 55.

5'-O-(Cyclohexylcarboxyl-glycyl)-2',3'-O-isopropylideneuridine ($\mathbf{3}$; $C_{21}H_{29}N_3O_8$) (second approach)

3 was prepared from 1.51 g cyclohexanecarboxylic acid (7.5 mmol), 0.78 g *DCC* (3.8 mmol), and 1.19 g 5'-O-(N-benzyloxycarbonyl-glycyl)-2'-3'-O-isopropylideneuridine (2.5 mmol) as described for **2** and $0.35 \, \text{cm}^3 \, \text{Et}_3 \text{N}$ (2.5 mmol) as described for **1** in 76% (1.13 g) yield.

5'-O-(Cyclohexylpropionyl-glycyl)-2',3'-O-isopropylideneuridine ($\mathbf{6}$; $C_{23}H_{33}N_3O_8$) (second approach)

The title compound was prepared from $1.17 \, \text{cm}^3$ cyclohexylpropionic acid (7.5 mmol), 0.78 g *DCC* (3.8 mmol), and $1.19 \, \text{g}$ 5'-O-(N-benzyloxycarbonyl-glycyl)-2',3'-O-isopropylideneuridine (2.5 mmol) which were treated as described for **2** and $0.35 \, \text{cm}^3$ Et₃N (2.5 mmol) as described for **1** in 78% (1.20 g) yield.

Acknowledgements

This work was supported by Grant No K-602 of the *National Fund for Scientific Research* at the Bulgarian Ministry of Education and Science.

References

- [1] Mulder GJ, Coughtrie MWH, Burchell B (1990) Conjugation Reaction in Drug Metabolism. Taylor & Francis, London
- [2] Macleod R, Eacling VA, Sim SM, Back DJ (1992) Biochem Pharmacol 43: 382
- [3] Restar A, Minick D, Spector T (1991) Biochem Pharmacol 42: 559
- [4] Fournel S, Gregoire B, Magdalou J, Carre M-Ch, Lafaurie Ch, Siest G, Coubere P (1986) Biochim Biophys Acta 883: 190
- [5] Fournel-Gigleux S, Shepherd SRP, Carre M-C, Burchell B, Siest G, Coubere P (1989) Eur J Biochem 183: 653

- [6] Noort D, Coughtrie MWH, Burchell B, van der Marel GA, van Boom JH, van der Gen A, Mulder GJ (1990) Eur J Biochem 188: 309
- [7] Said M, Noort D, Magdalou J, Ziegler JC, van der Marel GA, van Boom JH, Mulder GJ, Siest G (1992) Biochem Biophys Res Commun **187**: 140
- [8] Camarasa M-J, Fernandez-Resa P, Garcia-Lopez M-T, de las Heras, FG, Mendez-Castrillon PP, Alarcon B, Carrasco L (1985) J Med Chem **28**: 40
- [9] Paul P, Lutz TM, Osborn C, Kyosseva S, Elbein AD, Towbin H, Radominska A, Drake RR (1993) J Biol Chem **268**: 12933
- [10] Radominska A, Paul P, Treat S, Towbin H, Pratt C, Little J, Magdalou J, Lester R, Drake R (1994) Biochem Biophys Acta 1205: 336
- [11] Battaglia E, Elass A, Drake RR, Paul P, Treat S, Magdalou J, Fournel-Gigleux S, Siest G, Vergoten G, Lester R, Radominska A (1995) Biochem Biophys Acta **1243**: 9
- [12] Cano V, Lorentz C, Magdalou J, Loppinet V, Siest G, Ziegler J (1997) Life Sciences 61: 1
- [13] Timmers CM, Dekker M, Buijsman RC, van der Marel GA, Ethell B, Anderson G, Burchell B, Mulder GJ, van Boom JH (1997) Bioorg Med Chem Lett 7: 1501
- [14] Alargov DK, Naydenova Z, Grancharov K, Denkova PS, Golovinsky EV (1997) Monatsh Chem 128: 725
- [15] Alargov DK, Naydenova Z, Grancharov K, Denkova PS, Golovinsky EV (1998) Monatsh Chem 129: 755
- [16] Naydenova Z, Alargov D, Grancharov K, Golovinsky E (1996) Exp Toxic Pathol [Suppl] 48: 295
- [17] Naydenova ZG, Grancharov KC, Alargov DK, Golovinsky EV, Stanoeva IM, Shalamanova LD, Pajeva IK (1998) Z Naturforsch **53**(C): 173
- [18] Sheehan JC, Hess GP (1955) J Amer Chem Soc 77: 1067
- [19] Anwer MK, Spatola AF (1980) Synthesis 929
- [20] Hofle G, Steylich W (1972) Synthesis 619
- [21] Reindel F, Hoppe W (1954) Chem Ber 87: 1103

Received November 10, 1998. Accepted (revised) December 29, 1998